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1 BRIEF INTRODUCTION TO THE UNITED STATES CODE 
The schema described in this User Guide is used to produce the United States Code in XML. The United 
States Code contains the general and permanent laws of the United States, organized into titles based 
on subject matter. 

The United States Code is prepared and published by the Office of the Law Revision Counsel of the U.S. 
House of Representatives pursuant to 2 U.S.C. 285b. For the printed version of the Code, a complete 
new edition is printed every six years, and five annual cumulative supplements are printed in the 
intervening years. 

The Office of the Law Revision Counsel also produces an online HTML version of the United States Code 
for searching and browsing (http://uscode.house.gov/). The online HTML version of the United States 
Code is updated continuously as new laws are enacted. 

The Office of the Law Revision Counsel also produces (beginning July 30, 2013) an XML version of the 
United States Code for download (http://uscode.house.gov/download/download.shtml). The XML 
version is updated continuously as new laws are enacted. 

1.1 BULK DATA DOWNLOADS OF XML FILES 

1.1.1 Directory Structure 
The download directory (http://uscode.house.gov/download/download.shtml) contains one XML file for 
each title of the United States Code and a zip file for the entire Code. The directory also includes the 
XML schema files required for XML validation. A CSS stylesheet is provided for convenience. The CSS 
stylesheet is informational only and is not part of the United States Code. 

1.1.2 Download Protocols 
Bulk download is supported via HTTP protocols. 

1.1.3 Versions 
The most current version of the United States Code is available in XML, and prior versions in XML 
created on or after July 30, 2013, are also available. Eventually, the titles of some prior editions of the 
United States Code will also be available in XML. During the beta period, the XML format is subject to 
change. Some titles may be replaced with updated versions. The creation date and effective date of 
each title is provided on the website and in the metadata within the XML files. 

1.2 AUTHENTICITY OF DATA 
Section 204(a) of title 1, United States Code, which was enacted in 1947, relates to the printed version 
of the United States Code. It provides: 
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In all courts, tribunals, and public offices of the United States, at home or abroad, of the 
District of Columbia, and of each State, Territory, or insular possession of the United 
States[,t]he matter set forth in the edition of the Code of Laws of the United States 
current at any time shall, together with the then current supplement, if any, establish 
prima facie the laws of the United States, general and permanent in their nature, in 
force on the day preceding the commencement of the session following the last session 
the legislation of which is included: Provided, however, That whenever titles of such 
Code shall have been enacted into positive law the text thereof shall be legal evidence 
of the laws therein contained, in all the courts of the United States, the several States, 
and the Territories and insular possessions of the United States. 

In producing the United States Code, the Office of the Law Revision Counsel uses the same data to 
produce the printed version, the HTML version, and the XML version. 

The HTML and XML files created by the Office of the Law Revision Counsel can be manipulated and 
enriched by others and offered to the public in new forms. Once data moves beyond the direct control 
of the Office of the Law Revision Counsel, the Office cannot vouch for its accuracy. Consumers should 
make their own determinations as to the reliability of data from other sources. 
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2 USLM SCHEMA 

2.1 OVERVIEW 
United States Legislative Markup (USLM) is an XML information model designed to represent the 
legislation of United States Congress. Initially, USLM is being used to produce titles of the United States 
Code in XML, but it is designed to be adaptable for appendices to titles of the United States Code as well 
as bills, resolutions, statutes, and certain other legislative materials. USLM is intended to meet the 
following needs: 

1. Allow existing titles of the United States Code to be converted into XML. 
2. Support ongoing maintenance of the United States Code. 
3. Support the drafting of new positive law codification bills and related materials. 
4. Provide a flexible foundation to meet future needs of Congress. 
5. Be compatible with other legislative documents that already exist in other XML formats. 

This User Guide describes, at a high level, how USML is designed and how it can be used. USLM is 
designed using the XML Schema Definition language (XSD). This User Guide is intended for individuals 
familiar with XSDs and with document information modeling. For more information on XSDs, see the 
W3C website at http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/ and other reference 
materials on these subjects. 

Note: Version 1.0 of XML Schema is used for USLM. A more recent version, V1.1, is available as a 
recommendation, but currently there is very limited tool support for the more recent version. 

2.2 PRINCIPLES 
Following a 1999 feasibility study on XML/SGML,1 the Committee on House Administration adopted XML 
as a data standard for the exchange of legislative documents. As a result, the U.S. House of 
Representatives first publicly released Congressional bill data in XML in 2004. Since that time, a number 
of best practices and consistent approaches have evolved around the use of XML across various 
industries. To the greatest extent possible, the design of USLM leverages current best practices in 
legislative information modeling. 

2.2.1 Model the Data as It Appears 
To the greatest extent possible, text that is published is maintained in the main body of the document in 
the order it appears when presented in publication. 

                                                           
1 The feasibility study is rooted in a 1996 directive from the Committee on House Oversight (now known as the 
Committee on House Administration) and the Senate Committee on Rules and Administration to the Clerk of the 
House and Secretary of Senate, respectively, to work together toward establishing common data standards for the 
exchange of legislative information. See also 2 U.S.C. 181. 

http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
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2.2.2 Leverage Existing Standards 
To the greatest extent possible, established XML standards are incorporated into USLM. For example, 
XHTML2 is used for tables and the Dublin Core3 is used for metadata. 

2.2.3 Element Text vs. Attributes 
XML attributes are reserved for metadata and/or normalized representations of the element text. No 
attribute text should ever appear, as is, in the online or printed presentation of the United States Code. 

2.2.4 Generated Content 
In general, generated text is avoided in USLM. Over the past decade, as Congress has gained experience 
with bill drafting in XML, drafters have found that the use of generated text can be problematic, 
particularly when working with existing law. This general rule does not prevent specific renderings that 
use the USLM data to generate supplemental display information, such as the header or footer of the 
printed versions. 

2.3 SCOPE 
USLM is designed to support a specific set of documents that are legislative in nature. It is not a general 
model for documents outside this specific set. 

2.3.1 Types of Documents Covered 
USLM is designed to represent the legislation of United States Congress. Initially, USLM is being used to 
produce titles of the United States Code in XML, but it is designed to be adaptable for appendices to 
titles of the United States Code as well as bills, resolutions, statutes, and certain other legislative 
materials. 

2.4 GOALS 
The USLM schema is defined with the following goals in mind:  

1. Ease of Learning – XML schemas can be difficult to learn and master. It may be quite difficult to 
envision how all the pieces fit together and how various cases are to be accommodated. In 
addition, the heavy use of jargon may complicate the picture. To counter this, USLM is designed 
to be learned incrementally and to favor legislative and end-user terminology over computer 
jargon. USLM is laid out to allow someone learning it to learn each stage separately and only 
progress to the next stage when the prior stage has been mastered. 
 

2. Extensibility – It is not possible to anticipate all the document structures that may arise in 
legislation. The sheer volume of the legacy data makes an exhaustive analysis of legacy 
documents difficult, and it is impossible to predict all future needs for alternative legislative 
structures or drafting styles. A legislative schema must be able to evolve to allow changes to be 
incorporated, with a minimum of impact, in either a temporary or permanent way. USLM is 
designed, using XML Schema’s inheritance mechanisms, to allow for easy extensibility. 

                                                           
2 For more information, see: http://www.w3.org/TR/xhtml11/Overview.html#toc 
3 For more information, see: http://dublincore.org/  

http://www.w3.org/TR/xhtml11/Overview.html#toc
http://dublincore.org/
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3. Editability – One of the greatest challenges when designing an XML-based information model is 
to define a model which can be used for editing. USLM is designed to support both completely-
formed documents and the editing of documents under construction. 

2.5 CONVENTIONS 
Conventions are important for establishing consistency. 

2.5.1 Conventions Used in the User Guide 
The following conventions are used in the User Guide: 

1. XML element names are denoted with angled brackets and in courier. For example, <title> is 
an XML element. 

2. XML attribute names are denoted with an “@” prefix and in courier. For example, @href is an 
XML attribute. 

3. Enumerated values are denoted in courier. For example, landscape is an enumeration. 
4. String values are denoted with double quotes and in courier. For example, “title1-s1” is a 

string value. 
5. A new term being defined is shown in bold italic. 

2.5.2 Conventions Used in the XML 
The conventions below are used in the XML schema and XML document instances. It is important that 
these conventions be adhered to when the information model is initially defined, when it is modified, 
and when instances of documents that conform to it are created. 

2.5.2.1 Namespaces 
USLM supports the use of namespaces. XML provides a namespace mechanism to allow XML element 
names to be defined without naming collisions.  

2.5.2.2 Namespace URI 
XML namespaces are associated with a URI (Uniform Resource Identifier) which is known to be unique. 
This URI acts as an identifier defining, unambiguously, to which model the element belongs. It is possible 
to define a namespace URI as either a URN URI (a naming convention) or a URL URI (a locating 
convention). In USLM, URL URIs are used as a convention, which is the most common current practice. 

For USLM, the namespace URI is defined as the following URL: 

http://xml.house.gov/schemas/uslm/1.0 

2.5.2.3 Namespace Prefix 
Ordinarily, a namespace prefix is not necessary and should not be used. However, in cases where a 
namespace prefix is deemed necessary, the preferred prefix is “USLM”. 
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2.5.2.4 Schema Versioning 
A schema versioning model is defined in the namespace URI for USLM. The last part of the URL is the 
schema version number. If USLM is modified, a new version number is assigned. The lower order digit is 
used to represent evolutionary additions to the schema, while the higher order digit will change only if 
there is a substantial, and possibly incompatible, modification to the schema. 

Note: Schema changes will not be undertaken lightly. Changes can be costly and can severely impact 
systems that rely on the information model. Although the XML version of the United States Code is being 
released in beta format, efforts are being made to minimize the number and frequency of schema 
changes over time.  

2.5.3 Naming  
In USLM, naming conventions are used to promote consistency, cleaner design, and ease of use. In 
general, names are chosen to be short and to the point, while still conveying the primary purpose. 
Abbreviations are used only when the abbreviation is commonly accepted and not likely to cause 
confusion. 

In general, one-word names are preferred. If necessary, two- or three-word names are used. Two-word 
names are in the form adjective + noun. For three-word names, the last word defines a general class or 
type. 

2.5.3.1 Type & Groups 
Type and group names are defined in UpperCamelCase. For example, IdentificationGroup is an 
attribute group and is expressed in a form where all the words start with an upper case 
character. 

2.5.3.2 Elements 
Element names are defined in lowerCamelCase. For example, <longTitle> is an element name 
and is expressed in a form where all the words, except the first one, start with an upper case 
character. 

2.5.3.3 Attributes 
Attribute names are defined in lowerCamelCase. For example, @alignTo is an attribute name and is 
expressed in a form where all the words, except the first one, start with an upper case character. 

2.5.3.4 Names and Identifiers 
All @temporalId names are written in lower case, with underscore (“_“) separators between 
significant portions of the name. All @ids are defined to be globally unique as GUIDS and, for 
compatibility reasons, start with the "id" prefix. 

 

 



United States Legislative Model (USLM)  User Guide 

12 
 

2.6 RELATIONSHIP TO XHTML 
USLM leverages the XML version of HTML 4.0, commonly called XHTML. Many USLM attribute and 
element names purposely coincide with their XHTML equivalents. 

2.6.1.1 Identity and locating attributes: id, idref, href, and src. 
The @id, @idref, @href, and @src reference are identical to their XHTML equivalents. 

2.6.1.2 Role attribute 
The @role attribute is similar to the proposed @role attribute in XHTML and HTML5. It is used to 
provide additional semantic information about the purpose of an element. It is particularly useful with 
abstract elements that lack clear semantics. 

2.6.1.3 Style attributes: class and style  
The @class attribute is similar to its XHTML equivalent. It should be used to associate presentation 
classes, defined in a CSS file, with an element. 

The @style attribute is used to specify instance-specific styling, as an override to the class specific 
styling. Its use in USLM is identical to that in XHTML. 

The @class and @style attributes are explained in greater detail in section 9.2. 

2.6.1.4 Generic elements 
A number of elements in USLM are defined to be identical in name and function to elements in XHTML. 
This set is limited to elements that are likely to be needed within the main legislative language in 
situations where utilizing the XHTML namespace would be cumbersome or would prevent further use of 
the legislative structures available in USLM. In other cases where a USLM equivalent element is not 
defined, it is acceptable and recommended to use the XHTML element  with the appropriate namespace 
information. 

The elements borrowed from XHTML are: <p>, <br>, <img>, <center>, <b>, <i>, <sub>, <sup>, 
<del>, and <ins>. In addition to this set, there are other elements which share the same name as 
XHTML elements, but in those cases, the semantics behind the elements are either not completely 
similar or are totally different. Do not assume XHTML semantics merely because the element name 
coincides with an XHTML element name. 

2.7 RELATIONSHIP TO AKOMA NTOSO 
USLM is not defined to be either a derivative or subset of Akoma Ntoso (http://www.akomantoso.org/). 
It would be premature to define USLM in that way while the effort is still underway in the OASIS 
(http://www.oasis-open.org/committees/legaldocml) standards group to establish Akoma Ntoso as the 
XML standard for legislative documents. However, USLM is designed to be consistent with Akoma Ntoso 
to the extent practicable. Many of the element and attribute names in USLM match the Akoma Ntoso 
equivalents. As Akoma Ntoso becomes a standard, and as demand for it emerges, it should be possible 
to produce an Akoma Ntoso XML rendition of the United States Code through a simple transformation. 
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2.8 EXTERNAL DEPENDENCIES 
USLM has no dependencies on any other information model aside from the core XML model. However, 
the United States Code titles in USLM currently depend on the Dublin Core and XHTML namespaces. 
USLM supports the optional use of other information models to create composite documents made up 
of multiple namespaces. In particular, the use of the following information models is encouraged: 

1) Dublin Core for metadata. 
2) XHTML for tables and other loosely structure content. 
3) MathML for equations. 
4) SVG for vector graphics.  
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3 ABSTRACT MODEL VS. CONCRETE MODEL 
There are two basic document models in USLM - the abstract model and the concrete model: 

1. The abstract model is a general, highly flexible model defined using a minimum set of tags. 
 

2. The concrete model is derived from the abstract model, but it is more narrow. The concrete 
model is defined to precisely model the United States Code. It exists as a simple derivation from 
the abstract model. While the abstract model uses general terminology, the concrete model 
uses specific terminology. The specific terminology used in the concrete model is based on well-
established terminology used in the Office of the Law Revision Counsel, which produces the 
United States Code. 
 

If a tag is defined in the abstract model, and it is sufficient for direct use, the tag is not redefined in the 
concrete model. The abstract tag is used in documents without change. For example, the <num> tag is 
defined in the abstract model and used without change in all documents. The inheritance technique 
discussed in section 4 is used to establish these two models. 

4 INHERITANCE 
Inheritance is a technique, available in many computer languages, to define a basic object with basic 
behavior and then produce specializations by adding or modifying the behaviors. Inheritance is also 
available in XML. There are two ways to implement inheritance in USLM: 

1. In most situations, inheritance can be implemented in USLM using an approach inspired by the 
XML Schema approach. A base class is defined, and variants are derived from the base class to 
create new elements and modify the attribute and content models. The formality of this approach is 
an advantage. Adding classes requires a schema change, which constrains the creation of new 
classes without due consideration. 

2. For anomalous situations occurring so infrequently that modification of the schema is 
unwarranted, inheritance can be implemented in USLM with an approach inspired by XHTML, using 
the @role attribute to create subclasses. The element name represents the base class, and the 
@role attribute value represents the subclass. This approach makes it easy to create subclasses 
without changing the schema. Although this method provides welcome flexibility for special cases, it 
should be used sparingly to avoid the creation of many poorly defined and poorly supported 
subclasses. 

Note: There is a rough equivalence between the two approaches. For instance,  
<level role=”chapter”> is roughly analogous to <chapter>. However, there is no formal 
mechanism within XML to establish this equivalence.  
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4.1 POLYMORPHISM 
In a programming language, polymorphism is the ability to use an instance of a subclass wherever an 
instance of the base class is expected. XML schemas support polymorphism. However, in XML schemas, 
unlike programming languages, polymorphism is not an implicit capability that comes along with 
inheritance. In XML schemas, polymorphism is achieved by defining a base level element and then 
defining subclassed elements to be part of the base elements substitution group. 

Note: In XML Schema V1.0, substitution groups have limitations that were put in place to prevent 
ambiguous situations from arising which might be difficult for a tool or program to understand. These 
limitations have been addressed in XML Schema V1.1. Unfortunately, XML Schema V1.1 has not yet been 
adopted widely enough to serve as the basis for USLM. 

4.2 ANOMALOUS STRUCTURES  
Two issues drive the wide variety of legislative structures found in the United States Code. 

First, the United States Code contains Federal law enacted over a period of centuries, and legislative 
drafting styles evolve over time. To handle this issue, the data is converted using the XML schema 
subclassing mechanism. 

Second, some Federal statutes contain features that do not conform to any commonly accepted drafting 
style, past or present. To handle this issue, the data remains in the anomalous form, subclassed when 
possible using the @role attribute. 
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5 ABSTRACT MODEL 

5.1 CONCEPT 
The foundation of USLM is an abstract model that is designed to be a complete, but generic, legislative 
model using a minimum number of XML elements. It is possible to markup any U.S. bill or resolution or 
any title of the United States Code using the abstract model alone, albeit in a very general way. 

The abstract model contains three basic sets of elements: the primitive set, the core set, and the generic 
set. 

 The primitive set defines the fundamental building blocks used to construct everything else. 
 The core set defines the basic document model. 
 The generic set defines a basic set of general-purpose tags used to markup general structures. 

5.2 PRIMITIVE SET 
The primitive set is a set of four primitive elements that are the fundamental building blocks of the 
abstract model. All USLM elements can be traced back through the derivation hierarchy to one of the 
four primitive elements. The four primitive elements are the following: 

1 <marker> A marker is an empty XML element. It is used to denote a location or 
position within an XML document. 

2 <inline> An inline is an XML element that can be placed within text content – 
similar to an XHTML <span> element. An inline element can contain 
other inline elements, markers, or text. 

3 <block> A block is an XML element that is presented as a block-like structure and 
does not contain direct child text content. 

4 <content> A content is an XML element that is presented as a block-like structure 
and that can contain a mixture of text and XML elements. 

5.3 CORE SET 
The core set is a set of twenty-nine elements. Taken together, these twenty-nine core elements define 
the basic document model, which consists of six parts: 

1. The root level document. 
2. The metadata block. 
3. The main document body (including a table of contents, statements, a preamble or enacting 

clause, and hierarchical levels). 
4. A structure for references. 
5. A structure for amendments. 
6. A structure for any appendices. 
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The twenty-nine core elements that define the six-part basic document model are the following: 

1 <lawDoc> The document root for a legislative document. 

2 <document> The document root for a loosely-structured non-legislative 
document. 

3 <meta> An optional container at the start of the document for metadata. 

4 <property> A piece of metadata, usually in the <meta> block. 

5 <set> A set of metadata, usually containing properties. 

6 <toc> A table of contents. 

7 <tocItem> An item within a table of contents. 

8 <main> The primary container for the body of the document. 

9 <statement> Any statement at the start of the document. 

10 <preamble> A collection of recitals, ending with an enacting formula at the 
start of the document. 

11 <recital> A clause within the preamble. 

12 <enactingFormula> The enactment words at the end of the preamble or found in place 
of a preamble if the preamble is omitted. 

13 <level> A hierarchical item within the document. 

14 <num> The number, letter, or alphanumeric combination assigned to a 
hierarchical level. 

15 <text> A block of text, to be used whenever text is required in a block 
level structure but a parent element is required to conform to the 
schema. This is a base class for the <chapeau> and the 
<continuation> elements. 

16 <heading> An optional name or designation of a level element. 

17 <subheading> An optional name or designation, to be used below a 
<heading>. 

18 <crossheading> Placed within and amongst heading levels to separate items within 
a level. 

19 <instruction> A container used to describe an amendment to legislation. 
Contains <action> elements, as well as the relevant 
<quotedText> or <quotedContent>. 

20 <action> Describes the change to be made in an <instruction> 
element. 
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21 <notes> A container for <note>s. 

22 <note> An individual note. 

23 <appendix> A stand-alone appendix document, such as a United States Code 
title appendix, or an appendix at the end of the document. This 
can be either an embedded document or a referenced document. 

24 <signatures> A container for <signature>s. 

25 <signature> An individual signature, containing a name and, optionally, a role, 
affiliation, and/or date. 

26 <ref> A reference or link to another whole document, a specific location 
in another document, or another location within the same 
document. 

27 <date> A date. 

28 <quotedText> Plain text quoted from another document or intended to be 
placed, as stated, in another document. 

29 <quotedContent> Quoted content that may be plain text, XML elements, or text plus 
elements. The content may be quoted from another document or 
may be intended to be placed, as stated, in another document. 

5.4 GENERIC SET 
The generic set defines a set of general-purpose tags used to markup basic structures. Many of the 
USLM generic elements are borrowed from XHTML, but exist within the USLM namespace because it is 
often impractical or impossible to use XHTML structures directly, such as when special legislative 
structures are embedded within general structures (or general structures are embedded within special 
legislative structures). In such instances, the USLM generic set is used. The USLM generic set includes 
the following: 

1 <layout> A region to be presented in a column-oriented layout – similar to a table. 
 

2 <header> 
 

A heading row in a <layout> structure. 

3 <row> 
 

A normal row in a <layout> structure. In general, this level can be omitted. 
 

4 <column> 
 

A column cell in a <layout> structure. 

5 <p> 
 

A normal (unnumbered) paragraph. The semantics for a paragraph should be 
preserved. Do not use the <p> element as a general block like element. 
 

6 <br> 
 

A line break. This element should only be used to force a line break when 
other more semantic elements are not sufficient to achieve the desired 
formatting. 
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7 <img> 
 

An embedded image. This is a marker element which points, via a URL, to the 
image to be embedded. 
 

8 <center> 
 

Centered text. While this tag is deprecated in HTML 4.01, it is provided here 
for convenience as centering text is common. 
 

9 <fillIn> 
 

A region of text intended to be filled in on a form. 

10 <checkBox> A check box intended to be checked on a form. 

11 <b> 
 

Bold text. 

12 <i> 
 

Italic text. 

13 <sub> 
 

Subscripted text. 

14 <sup> 
 

Superscripted text. 

15 <del> 
 

Deleted text within a modification. 

16 <ins> 
 

Inserted text within a modification. 
 

5.5 ATTRIBUTE GROUPS 
The general-purpose attributes that are used in the abstract model (or in the concrete model derived 
from the abstract model) can be grouped into several categories. 

5.5.1 Identification 
The following attributes are used to identify elements in various ways. The identification group is a 
universal group and can be used on all elements. 

1 @id An immutable (unchangeable) id assigned to an element upon creation. It 
should be preserved as is when an element is moved. However, when an 
element is copied, new values for all @id attributes in the copied 
fragment should be generated. 

2 @name A name assigned to an element that  can be parameterized to support 
computation of a name or id a point in time.  For example: "s{num}". 

3 @temporalId An evolving name assigned to an element that reflects it current type and 
any numbering. 
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4 @identifier Used on the root elements to specify the URL-based path reference to 
that element. The @identifier is specified as an absolute path (i.e. a 
path beginning with a single slash) in accordance to the rules of the 
Reference Model described in section 13.  @identifier is an evolving 
identity and may only be valid for a specific time. 

5.5.2 Classification 
The following attributes are used to classify elements. These are primarily used for informal subclassing 
and styling purposes. 

1 @role Assigns a single semantic subclass to an element. This attribute is primarily 
for use with abstract elements, but may be used across all elements to 
provide a richer semantic association. 

2 @class Assigns one or more presentation classes to an element. These classes 
relate to CSS classes. 

3 @style Embeds CSS styles, particular to a specific instance, with the element. 

5.5.3 Annotation 
The following attributes are used to annotate or mark elements, usually for editorial reasons. Attribute 
values are not shown in a published form. The annotation group is universal and can be used on all 
elements. 

1 @note A simple text note not to be published. 

2 @alt An alternate description of an element. The @alt attribute is intended 
to map to the HTML @alt attribute for use with WCAG 2.0 and other 
accessibility initiatives. 

3 @meta An association with an element. How this attribute is used is not 
prescribed. 

4 @misc [Reserved for future use.] 

5 @draftingTip For internal use by the Offices of the Legislative Counsel of the U.S. 
House of Representatives or the U.S. Senate (or other entities in the 
legislative branch). 

6 @codificationTip For internal use by the Office of the Law Revision Counsel of the U.S. 
House of Representatives (or other entities in the legislative branch). 

5.5.4 Description 
The following attributes are used to describe or categorize elements. 

1 @title A short textual description of an item. 

2 @brief A longer textual description of an item. 
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3 @sortOrder A numeric integer used to signify the order in which an item should 
appear with its siblings. 

5.5.5 Reference 
The following attributes are used to establish pointers or references to other documents or locations 
within the same document. 

1 @href A URL reference to another document or part of another document. The 
@href URL in USLM is generally a path beginning with a single slash. A 

“resolver”, described in section 13, maps between the path found in the 
URL and the full URL required to retrieve the target item. 

 

2 @idref A reference to an item within the same document, identified by 
specifying the value of the @id attribute for the target element. If the 
@idref points to a <ref> element, then the referencing attributes of 
the target element are inherited, in a recursive fashion. This concept is 
described in more detail later in section 13. 

3 @portion Specifies an additional part of a reference to be tacked onto the existing 
context of a reference (usually established through the @idref). If the 
@portion does not begin with a separator character (“/”, “!”, “@”), 
then a “/” is assumed. 

5.5.6 Action 
The following attributes are used in amendments to declare how amendments are to be made. 

1 @type Describes, through an enumerated value, the action being taken. 

2 @occurrence Describes which occurrence of an item on which the action is to be 
taken. 

3 @commencementDate Specifies the date on which the action is to be taken. 

5.5.7 Amending 
Attributes used to point to items being amended. The amending group is used with the Reference Group 
and should be used only within amending instructions. 

1 @pos Specifies a relative position in which an action is to occur, such as 
before or after the item being referenced. 

2 @posText Used in conjunction with the @pos attribute to specify a location. It 
specifies text within the referenced item that the @pos is relative to. 
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3 @posCount Used in conjunction with the @posText attribute when an occurrence 
other than the first occurrence of a string of text is to be acted upon. In 
addition to specifying a particular instance, enumerated values are 
available to specify other sets, such as all. 

5.5.8 Link 
The following attribute is used to link other documents or images intended to be embedded within the 
primary document. 

1 @src A URL reference to a document, image, or other item to be embedded in 
a document.  If @src contains an absolute path, it should be handled by 
a resolver, similar to an @href attribute. 

5.5.9 Value 
The following attributes are used to hold normalized values computed from the text content. 

1 @value A normalized value representing the content of the element. 

2 @startValue A normalized value representing the start of a range expressed in the 
content of the element. 

3 @endValue A normalized value representing the end of a range expressed in the 
content of the element. 

5.5.10 Date 
The following attributes are used to hold normalized forms of date and time values computed from the 
text content. All date and date times are expressed as YYYY-MM-DD[Thh:mm:ss[Z|(+|-)hh:mm]]. 

1 @date A normalized date (or date and time) representing the content of the 
element. 

2 @beginDate A normalized date (or date and time) representing the start of a time/date 
range expressed as content of the element 

3 @endDate A normalized date (or date and time) representing the end of a time/date 
range expressed as content of the element 

5.5.11 Versioning 
The following attributes are used to manage the temporal, or time-based, aspects of legislation and the 
law. All time/dates used in the versioning group use the same time/date format as the Date group. 

1 @startPeriod The earliest date (or date and time) a version applies to. 

2 @endPeriod The latest date (or date and time) a version applies to. 

3 @status The state of a provision during the period. 
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4 @partial A Boolean specifying that the status is only partially in 
effect. 

5.5.12 Cell 
The following attributes are used for managing column structures. The @colspan and @rowspan 
attributes are borrowed from HTML and follow HTML's all lowercase convention. 

1 @colspan Specifies how many columns the current column cell should span. By 
default, a column cell only spans a single column. 

2 @rowspan Specifies how many rows the current column cell should span. By 
default, a column cell only spans a single row. 

 

3 @leaders Specifies a character to be used as a leader. Typically a dot leader (“.”) is 
used to create a series of dots. 

5.5.13 Note 
The following attributes are used for positioning and categorizing individual notes and groups of notes. 

1 @type When used within a note or a notes container, @type specifies the 
position of the note. Setting the @type attribute to “footnote” indicates 
that the note or notes contained should be shown in the footnotes at 
the end of the page and setting to “endnote” indicates that the note or 
notes contained should be shown at the end of the document. If not 
specified, “footnote” is assumed. For users of @type other than within 
notes, see below. 

2 @topic Specifies the focus of the notes. The @topic attribute is set to a string 
value in order to categorize the note or group of notes. An open, but 
enumerated, list of string values should be used. Using a fixed list of 
values will better aid in categorization of notes later. 

5.5.14 Other Attributes 
The following are other miscellaneous attributes. 

1 @xml:lang 
 

The language of the text contained. 

2 @xml:base A URL that can be used to resolve all URLs found in the document. USLM 
URLs are generally specified as absolute paths. This is to make USLM 
documents portable, allowing them to be rehosted in a different 
location without modification. The @xml:base provides a preferred 
location of a resolver capable of resolving the contained references. 
However, this location is only an advisory. It is be possible for a local 
system to determine its own preferred resolver location. 
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3 @orientation Used to specify when a landscape orientation is to be used when the 
item is published. If not set, the default orientation is portrait. 
 

4 @type Specifies an enumerated categorization beyond the classing and 
subclassing provided by USLM. Different elements that use the @type 
attribute provide different enumerated values to use. The @type 
attribute is generally used when the classification defines procedural or 
programmatic behaviors that must be implemented in the system. 
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6 CORE DOCUMENT MODEL 

6.1 CONCEPT 
The core document model uses the core elements of the abstract model discussed above to define a 
simple model for constructing legislation or law with abstract elements. This model is summarized 
below. A number of details are omitted for the sake of brevity. 

 

<?xml version=”1.0” encoding=”UTF-8”?> 

<lawDoc  
 xmlns=http://xml.house.gov/schemas/uslm/1.0 
 xsi:schemaLocation=”http://xml.house.gov/schemas/uslm/1.0 
                 ./USLM-1.0.xsd” 
 xml:base="http://resolver.mydomain.com" 
     identifier=”/us/usc/t5”> 
   <meta> 
      <property name=”docTitle”>…</property> 
      … 
   </meta> 

   <main> 
      <layout> 
         <header>Table of Contents</header> 
         <toc> 
            <tocItem title=”Chapter 1”> 
               <column>1.</column> 
               <column leaders=”.”>General Provisions</column> 
               <column>101</column> 
            </tocItem> 
         </toc> 
      </layout> 
 
      <level role=”Chapter”> 
         <num value=”1”>CHAPTER 1.</num> 
         <heading>General Provisions</heading> 
         <content> 
            ... 
         </content> 
      </level> 
   </main> 
</lawDoc> 
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6.2 METADATA 
The metadata block, <meta>, is an optional block of named properties or sets of named properties at 
the start of the document. Properties are defined as simple strings. The metadata model is open and 
unconstrained to provide maximum flexibility. 

Information found in the metadata block is generally not printed in the published form. 

Some of the metadata may be generated through analysis of the main text of the document. Whenever 
the document is modified, this metadata is regenerated to accurately reflect the current state. 

Metadata can be defined using (1) the abstract <property> and <set> elements, (2) the built-in < 
<docNumber>, and other properties, or (3) elements defined in the Dublin Core. 

6.3 MAIN 
The main text of the document is contained in the <main> block. The main block will not have an @id 
or a @name attribute. References to items in the main body may skip or suppress the main level in the 
reference. 

6.4 APPENDICES 
An appendix can either follow the main part of a document or be a stand-alone document. To include an 
appendix as a stand-alone document, omit the <main> element and include the <appendix> 
element directly after the metadata. This technique is used for United States Code title appendices (e.g., 
Title 5 Appendix). 

There can also be any number of appendices following the main part of the document. These may also 
be known as schedules, annexes, or explanatory notes/memoranda. An <appendix> element can 
either contain the content within the document or it can reference the content for inclusion using the 
@src attribute. 

6.5 SIGNATURES 
Some documents contain signatures of the people who introduce, sponsor, or approve the legislation. 
The signatures are held in a <signatures> block, either at the top of the main part of the document 
or in the appendices. 

6.6 MULTIPLE MODELS 
Models from multiple XML namespaces are used to construct a USLM document. The dcterms model is 
used for metadata.  The XHTML model is used for tables.  XHTML may also be used to mark the external 
document for inclusion within the larger legislative document. In the future, MathML may be used for 
equations and SVG may be used for vector graphics.    
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7 CONCRETE MODEL 

7.1 CONCEPT 
The concrete model builds on the abstract model discussed in section 5 of this document. The concrete 
model implements a broad set of tags to meet specific semantic needs now and in the future. These tags 
are generally implemented as simple synonyms of the tags in the abstract model. This approach 
preserves the simplicity and flexibility of the abstract model. 

7.2 DOCUMENTS 
 Element Derived From Contains 
1 <bill> <lawDoc> A proposed bill 

 
2 <statute> <lawDoc> An enacted bill 

 
3 <resolution> <lawDoc> A proposed resolution 

 
4 <amendment> <lawDoc> A document containing a pre-enactment stage 

amendment 
 

5 <uscDoc> <lawDoc> A title or appendix of the United States Code 
 

7.3 PROPERTIES 
 Element Derived From Contains 
    
    
    
1 <docNumber> <property> A numeric designation assigned to the 

document 
    
2 <docPublicationName> <property> The name of  the publication that the 

document is part of 
3 <docReleasePoint> <property> The point (i.e. the Public Law number for a 

United States Code title) at which the 
document was released 

7.4 TITLES 
 Element Derived From Contains 
1 <docTitle> <statement> A statement that precedes the long title in the bill 

 
2 <longTitle> <statement> A statement that sets out the purposes of the bill 

 
3 <shortTitle> <inline> The short title of a bill where it is first defined 
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7.5 LEVELS 
 Element Derived From Contains 
1 <preliminary> <level> A hierarchical region of the main document 

consisting of preliminary clauses that are 
outside of the main document hierarchy 
 

2 <title> <level> A hierarchical level in a legislative document 
 

3 <subtitle> <level> A level below <title> 
 

4 <chapter> <level> A hierarchical level in a legislative document 
 

5 <subchapter> <level> A level below <chapter> 
 

6 <part> <level> A hierarchical level in a legislative document 
 

7 <subpart> <level> A level below <part> 
 

8 <division> <level> A hierarchical level in a legislative document 
 

9 <subdivision> <level> A level below <division> 
 

10 <article> <level> A hierarchical level in a legislative document 
 

11 <subarticle> <level> A level below <article> 
 

12 <section> <level> The primary hierarchical level in a <title> 
or <bill> 
 

13 <subsection> <level> A level below <section>. Usually 
numbered with lower-case letters. 
 

14 <paragraph> <level> A level below <section>,often below a 
<subsection>. Usually numbered with 
Arabic numbers. 
 

15 <subparagraph> <level> A level below <paragraph>. Usually 
numbered with upper-case letters. 
 

16 <clause> <level> A level below <subparagraph>. Usually 
numbered with lower-case Roman numerals. 
 

17 <subclause> <level> A level below <clause>. Usually 
numbered with upper-case Roman 
numerals. 
 

18 <item> <level> A level below <subclause>. Usually 
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numbered with double lower-case letters. 
 

19 <subitem> <level> A level below <item>. Usually numbered 
with double upper-case letters. 
 

20 <subsubitem> <level> A level below <subitem>. Usually 
numbered with triple lower-case letters. 
 

21 <compiledAct> <level> An act that is included in a title appendix.  
Amendments to these acts are typically 
compiled into the included act. 
 

22 <courtRules> <level> A level container to hold a sequence of court 
rules.  Found in title appendices. 
 

23 <courtRule> <level> An individual court rule.  Found in title 
appendices. 
 

24 <reorganizationPlans> <level> A level container to hold a sequence of 
reorganization plans.  Found in title 
appendices. 
 

25 <reorganizationPlan> <level> An individual reorganization plan.  Found in 
title appendices. 

7.6 OTHER STRUCTURES 
 Element Derived From Contains 
1 <def> <text> One or more <term> elements, as well as their 

respective definitions 
 

2 <term> <inline> A term in the document that is being defined 
 

3 <chapeau> <text> Introductory text that comes before lower levels 
in a level hierarchy  
 

4 <continuation> <text> Final or interstitial text that comes after or 
between lower levels in a level hierarchy  
 

5 <proviso> <text> A paragraph of text, usually beginning with 
“Provided that” or “Provided”, that states 
conditions on the law to which it is related 
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7.7 NOTES 
 Element Derived From Contains 
1 <sourceCredit> <note> Text containing the source of a provision, 

usually surrounded by parentheses 
 

2 <statutoryNote> <note> A note that becomes part of the law 
 

3 <editorialNote> <note> A note included for editorial purposes only 
 

4 <changeNote> <note> A note that records a non-substantive 
change that has been made to the 
document, usually surrounded by square 
brackets 

7.8 SIGNATURES 
 Example Derived From  
1 < made> <signature> The signatures of the people making the 

legislation 
 

2 <approved> <signature> The signatures of the people approving the 
document 

7.9 APPENDICES 
 Example Derived From  
1 <schedule> <appendix> An appendix to a document, often a list of 

numbered items, a table, or another 
document  
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8 VERSIONING MODEL 

8.1 CONCEPT 
Legislative documents frequently evolve as existing provisions are repeatedly amended. Managing the 
versioning of legislative documents is a complex problem. 

Rather than managing versioning by creating a whole new document every time an amendment is 
made, the versioning is instead managed in a more granular way. USLM is designed to allow a large 
degree of flexibility in how the versioning takes place. This allows for limitations in the short term and 
for greater sophistication as needs evolve. 

8.2 MANAGING VERSIONS 
The USLM model for versioning allows versions to be handled in a hierarchical manner from the 
document root all the way down to individual provisions. In general, it is best to version at the lowest 
possible level of the hierarchy. This minimizes the likelihood of amendments overlapping in time, which 
would require the creation of different versions to handle the different states of the text through the 
overlapping time period.  

In addition, if versioning is too high up in the hierarchy, then each new version will cause an entire copy 
of the lower levels to be generated. For this reason, it is preferable to push the versioning down to the 
lower parts of the level – such as the <num> or the <heading> elements when versioning upper (or 
big) levels in legislative text. 

When choosing a level at which to apply versioning, it must be possible for multiple versions of an 
element to coexist alongside one another. For this reason, the structure defined in the schema allows 
multiple instances of an element (maxOccurs=”unbounded”).  

8.3 TEMPORAL PERIODS 
Alternate versions of the same item exist alongside one another within the same document, with each 
version being associated with a specific temporal period defined by the @startPeriod and 
@endPeriod attributes. In cases where one of these attributes is missing, then the same attribute 
found at a higher level in the document hierarchy applies. If no such attribute is found, then the time 
period is open-ended in that temporal direction. 

The @startPeriod or @endPeriod can be defined as either a simple date or as datetime. When 

defined as a simple date, then midnight at the beginning of the date is assumed when establishing the 
correct instant for point-in-time calculations. 

8.4 STATUS 
The @status attribute is used to declare the status of a version. It is important to realize that the 
@startPeriod and @endPeriod are defining a time period for a version of an item and may not 
correspond to an effective date or repeal date.   
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Statuses in USLM include proposed, withdrawn, cancelled, pending, operational, 
suspended, renumbered, repealed, expired, terminated, hadItsEffect, omitted, 
notAdopted, transferred, redesignated, reserved, vacant, crossReference, and 
unknown. 
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9 PRESENTATION MODEL 

9.1 CONCEPT 
Presentation is based on concepts similar to XHTML. An overriding rule is to separate, as much as 
possible, the formatting of the text for publication from the semantic model. To the greatest extent 
possible, the XML elements of USLM reflect the semantic model rather than the formatting model. 
Some formatting elements related to presentation are included in the XML, such as the <layout> 
structure and the <b> and <i> elements. These formatting elements are provided for the sake of 
practicality. 

Most styling is handled using Cascading StyleSheets (CSS), as is the case with modern HTML. 

9.2 CSS ATTRIBUTES 
There are two primary attributes which are used to affect the presentation of the text: 

1 @class The @class attribute is used, as in HTML, to identify CSS classes.  

2 @style The @style attribute is used to specify CSS attributes. Ordinarily, all 
presentation attributes should be specified in a separate CSS file. 
However, there are many legacy cases where individual instances do not 
follow the standard form for presentation of that element. In these cases, 
the converter should leave the non-standard formatting with the @style 
attribute where it can override the CSS attributes defined in the external 
stylesheet. 

9.3 HTML REPRESENTATION 
There is a straightforward method to transform a USLM-based XML document to and from HTML5. This 
approach is designed to maintain the integrity of the information. Bidirectional transformations can 
occur in a web-based editing environment without losing or changing any data. 

The method to transform from USLM-based XML to HTML5 is as follows: 

1. All XML elements based on the marker, inline, or string types are transformed into HTML5 
<span> elements. 
 

2. All XML elements based on the block or content types are transformed into HTML5 <div> 
elements. 
 

3. The <layout> XML elements are translated into HTML5 <table> elements. The <layout> 
child elements become <tr> elements unless they are the USLM <column> elements. In 
that case , a single <tr> row is defined to contain the columns, and the <column> elements 
become <td> HTML table cells. 
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4. Any @role attribute on the XML element becomes the @role attribute on the HTML5 
element. If there is no @role attribute on the XML element, then the element name becomes 
the HTML5 @role attribute. 
 

5. The @class attribute on the HTML5 element is composed of the local name of the XML 
element, followed by an underscore character and the XML @role attribute value if it exists, 
followed by the XML @class attribute values, space separated. For instance, the element 
<level role="Chapter" class="indent1"> becomes the 
@class="level_Chapter indent1" attribute. 
 

6. Any @xml:lang attribute on the XML element becomes the HTML5 @lang attribute. 
 

7. The following attributes carry over from the XML element to an identically named HTML5 
attribute: @style, @id, @href, @idref, @src, @alt, @colspan, and @rowspan. 
 

8. All other attributes carry over to the HTML5 by inserting the prefix “data-“ + namespacePrefix 
+ “-“ + XML attribute. For example, the @name attribute on the XML element becomes the 
@data-uslm-name attribute. 
 

9. The entire resulting HTML5 document fragment is ordinarily placed within the HTML5 <body> 
element. 
 

10. CSS classes are associated with the resulting HTML5 fragment using well-established HTML5 
methods. 

The transformation from HTML5 back to USLM-based XML is accomplished by reversing the process 
described above. 
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10 HIERARCHICAL MODEL 

10.1 CONCEPT 
Most legislative documents have a well-defined hierarchical structure of numbered levels. The abstract 
model provides a general-purpose hierarchy necessary for legislative documents. This hierarchy does 
not impose restrictions, but instead allows any <level> to be placed within any <level>. This 
flexibility allows varying structures, some of which are anomalous, to be supported without adding 
layers of complexity. 

10.2 LEVELS 
The fundamental unit of the hierarchy is the <level> element. A discussion below describes how the 
@class attribute and XML schema substitution groups can be used to subclass this fundamental unit to 
produce the various levels found in the United States Code. 

A level is composed of (1) a <num> identification designation, (2) an optional <heading>, and (3) 
either primarily textual <content>, lower hierarchical <level> children, or a few other possible 
elements. 

10.3 BIG LEVELS VS. SMALL LEVELS 
The principal level is the <section> level. Levels above the <section> level are referred to as 
“big” levels and levels below the <section> level are referred to as “small” levels. 

Big Levels title, subtitle, chapter, subchapter, part, subpart, division, subdivision 

Primary Level section 

Small Levels subsection, paragraph, subparagraph, clause, subclause, item, subitem, 
subsubitem 

The primary difference between big levels and small levels is in how they are referred to in references. 
Big levels and primary levels are referred to using a prefix to identify the level’s type. Small levels are 
referred to simply by using the number designation assigned to the level in a level hierarchy. Further 
details are discussed below under Referencing Model. 

10.4 SANDWICH STRUCTURES 
Sandwich structures are hierarchical levels that start and/or end with text rather than lower levels. This 
structure is quite common. Typically, some text will introduce the next lower level or will follow the last 
item of a lower level. The <chapeau> (French for "hat") and <continuation> elements are 
provided for this structure. The <chapeau> precedes the lower levels and the <continuation> 
follows the lower levels. The <continuation> element can also be used for cases where interstitial 
text is found between elements of the same level. 
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One specific type of continuation text is a paragraph-like structure beginning with “Provided that” or 
“Provided”. The <proviso> element is used in this case. Multiple provisos may exist. 

10.5 TABLE OF CONTENTS 
A table of contents (TOC) model is provided to model the level hierarchy. A TOC can appear either at the 
top of a hierarchy or at lower levels, and in the main part of the document or in an appendix. The root of 
the TOC structure is the <toc> element and the levels can be arranged into a hierarchy of <tocItem> 
elements. Attributes from the description group are used to define the information in the hierarchy. 

The <toc> structure can be intermixed with the <layout> structure to define a tabular layout for a 
table of contents. 
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11 TABLE MODEL 
Two table-like models can be used with USLM: (1) a column-oriented model and (2) the HTML table 
model. 

11.1 COLUMN-ORIENTED 
Use the column-oriented <layout> model when information related to the legislative structure is to 
be arranged in a column- or grid-oriented fashion, but not a true table. The advantage of the column-
oriented <layout> model is that it is defined within USLM, so it can contain other USLM elements. 
The drawback is that it is a non-standard table model, so it is not inherently understood by tools that 
handle standard HTML tables. 

The <layout> model is intended to be flexible. It provides a <row> element for defining individual 
rows. When there is a row structure, the parts of each row that belong within each column are 
identified using the <column> element. Any direct child of the <layout> element is considered to be 
a row unless it is a <layout> element.  

However, when the <column> element is a direct child of the <layout> element, then there is no 
notion of rows, and the columns form a basic structure of the <layout>.  If <layout> contains any 
<column> child, then it must only contain <column>s as children. 

Like HTML tables, the <layout> model supports the @colspan and the @rowspan elements. 

11.2 HTML TABLES 
Use the HTML <table> model when (1) information is arranged in a tabular structure, (2) there is little 
information within the table that is part of the legislative structure, or (3) the structure is regarded as a 
normal table with gridlines and table cells. 

An embedded HTML table will look something like this: 

<schedule name=”sch{num}”> 
   <num value="1">Schedule 1</num> 
   <heading>…</heading> 
   <table xmlns=http://www.w3.org/1999/xhtml”> 
      <th>…</th> 
      <tr>…</tr> 
      … 
   <table> 
</schedule> 
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12  IDENTIFICATION MODEL 

12.1 CONCEPT 
Elements are assigned identifiers or names for two primary purposes. The first is to be able to reliably 
refer to the element throughout its lifetime, regardless of how it might be altered. The second is to be 
able to address the item based on its current state. To support both of these purposes, the available 
attributes are @id, @temporalId, @name, and @identifier. 

12.2 IMMUTABLE IDENTIFIERS 
Immutable identifiers are unchanging identifiers that are assigned when the element is created and do 
not change throughout the lifetime of the element. This makes them reliable handles with which to 
access the elements in a database or repository system. The @id attribute is used for this purpose. It is 
defined as an XML Schema ID, which requires that all @id attribute values be guaranteed to be unique 
within a document, with no exceptions.  

For the purposes of document management in USLM, especially in the amending cycle, @id values 
should be computed as GUID (Globally Unique Identifiers) with an "id" prefix. This means that they 
should be computed using an algorithm that guarantees that no two identifiers, in any document, 
anywhere, will ever be the same. This is a broader definition of uniqueness than imposed by the XML 
Schema ID definition. There are many tools available to generate GUIDs. 

Whenever an element is moved, its @id attribute value must be preserved. When an element is copied, 
a new value for the @id attribute value must be generated for the new element created. Special care 
must be taken to ensure that the @id value is managed correctly. Proper management of the @id 
attribute value will provide a reliable handle upon which to attach other metadata such as commentary. 

It is important that the value of the @id attribute not reflect, in any way, some aspect of the element 
that might change over time. For instance, if there is a number associated with an element and that 
number is subject to renumbering, then the @id attribute value should have no relation to the number 
that is subject to renumbering. 

12.3 TEMPORAL IDENTITY 
A @temporalId is a human-readable identity, scoped at the document level. While the @id attribute 
is defined to be unique in the document and constant throughout the lifetime of the element, and the 
schema enforces this uniqueness, the @temporalId attribute is defined loosely and changes to reflect 
the current location and numbering of the element over time.  

Because the @temporalId attribute is assigned a value that reflects the current state of the element, 
special care must be taken to ensure that the value of the @temporalId attribute is recomputed 
anytime the state of the element changes. It is usually a good practice to recompute the 
@temporalId values whenever the document is committed or saved. 
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Ideally, the @temporalId attribute should be unique in a document, but this is not always possible 
due to various anomalies. For this reason, the uniqueness of the @temporalId attribute is not 
enforced by the schema, and some ambiguity is possible. How the disambiguation of duplicate names is 
handled is a subject that must be dealt with in the design of the software systems which will encounter 
this situation. 

A recommended approach for computing the @temporalId value is to base the name on the 
hierarchy to get to the element, almost in a path-like fashion. The @temporalId value can be 
constructed as follows: 

[parentId + “_“] + [bigLevelPrefix] + num 

Where: 

parentId is the @temporalId value of the parent element. If the parent element does not 
have a @temporalId value or does not have a unique @temporalId, then the local XML 
name of the parent element is used, with special care being taken to ensure that all parent 
elements that are not unique have assigned @name values. 

bigLevelPrefix = a prefix reflecting the level type, such as “p” for part, “d” for division, or 
“sd” for subdivision. For sections use “s”. For small levels, no prefix is used.  

num = the normalized value of the number or designation given to the level. 

Exceptions: 

 The <doc> root level should be omitted from the computation. 

 The <main> level should be omitted.  

Levels of the hierarchy should be omitted whenever the numbering of a level does not require 
references to the higher levels. For example, section numbers are usually unique throughout the 
document, so it is not necessary to use the higher big levels to compute a name. So a section 
can be identified as simply “s1” rather than “p1_d1_s1”.  

For example, part III of subchapter II of chapter 12 of Title 8 would have a @temporalId of 
“ch12_schII_ptIII”, and subparagraph (A) of paragraph (1) of subsection (a) of section 1201 of Title 8 
would have a @temporalId of “s1201_a_1_A”. 

12.4  LOCAL NAMES 
Local names are usually related to the parent element or container in which they are found. This is the 
purpose of the @name attribute. The most common use of the @name attribute is when naming a 
<property> element. The @name attribute is also used to name a level within the local context of its 
parent level.  

There is a problem with naming a level: its name is subject to change through time. This is because 
levels are subject to renumbering. To support this, the @name can be defined in a parameterized way. 
The parameters will need to be evaluated whenever a document is requested for a specific point-in-
time. 
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The parameters are specified within the @name attribute value using a curly braces notation. Two 
parameters can be specified: 

1) Use the {num} parameter to include the current normalized value (i.e., the @value attribute of 
the <num> element) in the name of the level. 

2) Use the {index} parameter to include the 1-based index position, calculated against other 
elements of the same type at the same level. 

To better ensure the uniqueness of the @name attribute values generated in the future, a rational 
scheme must be designed. This is important because the @name attribute is also used in the mapping of 
links or references to elements. This process is accomplished by a web server add-in called a “resolver”. 
Resolvers are described in the next chapter. 

12.5     IDENTIFIERS 
An @identifier is used on the root element to specify the URL reference to the document root. The 
@identifier is specified as an absolute path in accordance to the rules of the Reference Model 
described in this document.  

An @xml:base attribute is also specified on the root element to specify the location of a preferred 
resolver capable of resolving a reference. The @xml:base concatenated with the @identifier 
forms a complete URL reference. 

Typically, the @identifier will be established on the root element and all level elements.     
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13 REFERENCING MODEL 

13.1 CONCEPT 
References are a machine readable format for making very precise citations or establishing links 
between different things in a document. The prevailing method for establishing references is to use 
HTTP-based hyperlinks, using the familiar technology prevalent on websites.  

These references are, like websites, modeled as Universal Resource Locators (URL). A URL is a string 
representing a hierarchical path down to the item being requested, using forward slashes “/” as 
hierarchical separators. In normal websites, each level in the URL represents a folder, terminating in a 
file that is being requested. URLs can be specified in one of three ways: (1) global references starting 
with “http://{domain}”; (2) absolute paths starting with “/”; or (3) relative references starting 
with “./”. Absolute paths typically use the local domain as the context for the URL, while relative 
references use the current file as the context. 

USLM references use a variation of the absolute path technique. All references thus start with a forward 
slash “/”. However, rather than representing folder and files, the hierarchical path represents a 
conceptual hierarchy down to the item in question. This path is known as a logical path. The logical path 
does not represent the folder/file hierarchy as with a physical path. In fact, there may be no physical 
path for information stored in a database rather than in a file system. 

Web servers usually handle the task of interpreting a URL and retrieving the requested file from the file 
system. With USLM references, however, the mapping is not so straightforward. A web server must 
interpret the logical path in the URL and retrieve the requested information from a database. This task is 
accomplished by a web server add-in called a “resolver”. 

How the resolver is constructed depends on the web server being used and the storage format for the 
documents. All modern web servers provide some form of facility to allow a resolver to be constructed. 
This issue is discussed in greater detail below under Reference Resolver. 

13.2 URL REFERENCES 
The International Federation of Library Associations and Institutions (IFLA) (http://www.ifla.org/) has 
developed a conceptual entity-relationship model for organizing bibliographic records (like index cards 
at a library). This model is called the Functional Requirements for Bibliographic Records (FRBR – 
pronounced "Ferber"). FRBR creates the conceptual framework for the USLM references.  
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References in USLM are composed using the following format: 

 [item][work][lang][portion][temporal][manifestation] 

Where: 

• item – identifies the location of an instance. For non-computer locations, this is expressed as 
an http domain. An example would be http://uscode.house.gov. 
 

• work – identifies the logical hierarchy down to the document being referenced. This hierarchy 
starts by identifying the jurisdiction (“/us” for United States) and continues by identifying the 
document (“/usc/t5” for Title 5). The jurisdiction is included in order to distinguish between 
the library that serves the document and the jurisdiction where the document originated. With 
this approach, it is possible for a library to serve a document from a different jurisdiction. 
 

• lang expression (“!” prefix) – identifies the language. If the lang is not specified, then the 
language is assumed to be the language of referencing document or referencing environment. 
 

• portion (“/” prefix) – extends the work hierarchy to identify an item within the document. For 
example, “/s1/a/2” for paragraph (2) of subsection (a) of section 1 in the main body. Note 
that the portion is an easy mapping of the @temporalId for that element which is “s1_a_2”. 
This gives a hint for how to resolve the portion part of a URL identifier. 
 

• temporal expression (“@” prefix) - the date/time is expressed according to ISO 8601 
(“@2013-05-02” for May 2, 2013). If the “@” is specified, but without a date/time, then the 
reference is to the current time. If no temporal expression is specified, the context may be used 
to identify the point-in-time, which is usually the date of the document making the reference. 
 

• manifestation (“.” prefix) – identifies the format as a simple file extension (“.xml” for the 
XML file, “.htm” for HTML, and “.pdf” for the PDF). 

Examples: 

• /us/usc/t5/s1/a – the current version of subsection (a) of section 1 of title 5. 
 

• /us/usc/t5/s1/a@2013-05-02 – the version of subsection (a) of section 1 of title 5 that 
was in effect on May 2, 2013. 
 

• /us/usc/t5/s1/a.htm - the current version of subsection (a) of section 1 of title 5, 
rendered as HTML. 
 

• http://uscode.house.gov/download/us/usc/t5/main/s1/a.htm the current 
version of subsection (a) of section 1 of title 5, rendered as HTML and delivered from 
http://uscode.house.gov/download. 

 

http://uscode.house.gov/
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Notes: 

• References in documents (using the @href and @src attributes) should always be stored as 
absolute paths, which omit the item part. This allows the reference to be independent of the 
site hosting the document. The role of the resolver is to determine which location can best serve 
the desired item. This allows a document to be moved from one digital library to another 
without changing the references within the XML. The item location is implicit in the library 
containing the reference. An exception is when a specific item is desired, usually when 
referencing an item from a foreign jurisdiction. 
 

• There are generally two common methods to identify a document's type. One method is by 
extension as described above. The other method is to use the MIME type. The MIME type is a 
more robust solution because it allows for a wide variety in file extensions for the same type 
(e.g., ".htm" or ".html" for HTML files). However, file extensions are simpler and less 
cumbersome. This means that an agreed upon registry of file extensions should be maintained 
by the system. 

13.3 REFERENCE ATTRIBUTES 
There are four attributes which contain references or portions of references: 

1) @href-- This is a pointer or link to another document. It is generally stored as an absolute 
path. Prepending the domain to identify a particular instance or library from which the 
information is to be sourced is left to the local resolver. This allows a document to be relocated 
in another digital library without changing all the references. 
 

2) @portion-- Often the textual representation of a reference is scattered in several places in a 
document. For instance, a set of amendments might be prefaced with an identification of the 
document affected, such as title 5 of the United States Code, while the individual amendments 
might specify only a portion of that document, such as subsection (a) of section 1. The 
@portion attribute allows a reference to be extended. This will generally be constructed as 
follows: 

<ref id=”ref001” href=”/us/usc/t5”/> 
… 
<ref idref=”ref001” portion=”/s1/a”/> 
 

The example above shows an initial reference to title 5, United States Code. The second 
reference refers to the first, acquiring the first reference's @href and then extending it with the 
@portion to produce the reference /us/usc/t5/s1/a. This approach can be recursive. 
 

3) @src – in addition to pointing to other documents, it is often desirable to embed other 
documents within a primary document. The @src attribute is used in this case.  
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4) @origin – When a fragment of a document is copied into another document, and it is 
necessary to record the place from which the fragment was copied, the @origin attribute is 
used. This exists for the <quotedText> and <quotedContent> elements.  

13.4 REFERENCING NOMENCLATURE 
The following case-insensitive referencing nomenclature is used; 

Short Form Long Form Description 

pl[0-9]+ publicLaw[0-9]+ Public Law + number – Statute 

t[0-9|a-z]+ title[0-9|a-z]+ Title + number 

st[0-9|a-z]+ subtitle[0-9|a-z]+ Subtitle + number 

ch[0-9|a-z]+ chapter[0-9|a-z]+ Chapter + number 

sch[0-9|a-z]+ subchapter[0-9|a-z]+ Subchapter + number 

p[0-9|a-z]+ part[0-9|a-z]+ Part + number 

sp[0-9|a-z]+ subpart[0-9|a-z]+ Subpart + number 

d[0-9|a-z]+ division[0-9|a-z]+ Division + number 

sd[0-9|a-z]+ subdivision[0-9|a-z]+ Subdivision + number 

s[0-9|a-z]+ section[0-9|a-z]+ Section + number 

art[0-9|a-z]+ article[0-9|a-z]+ Article + number 

r[0-9|a-z]+ rule[0-9|a-z]+ Rule + number 

[a-z]+ [a-z]+ Subsection letter 

[0-9]+ [0-9]+ Paragraph number 

[A-Z]+ [A-Z]+ Subparagraph Letter (capital letters) 

[i-x]+ [i-x]+ Clause (lower case roman numeral) 

[I-X]+ [I-X]+ Subclause (upper case roman numeral) 

[aa-zz]+ [aa-zz]+ Item (double lower case letter) 

[AA-ZZ]+ [AA-ZZ]+ Subitem (double upper case letter) 

[aaa-zzz]+ [aaz-zzz]+ Subsubitem (triple lower case letter) 

(suppress) main Main body 

shortTitle shortTitle Short title 

longTitle longTitle Long title 

preamble preamble Preamble 
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proviso proviso Proviso 

app[0-9]* appendix[0-9]* Numbered or unnumbered appendix 

   

Note: The prefixes are defined to be case-insensitive. This is done as case-sensitive URLs can be 
problematic in some environments.  

13.5 REFERENCES WITHIN AMENDMENT INSTRUCTIONS 
Amendments refer to the item that they are amending. The reference may be complex, specifying not 
only the item affected, but a relative position either within, before, or after the item affected. Three 
additional attributes are provided with references to allow this sort of specification: 

• @pos – Specifies a position that is either at the start, before, inside, after, or at the 
end of the context item. 
 

• @posText – Establishes the context for the position relative to text contained within the 
referenced item. 
 

• @posCount – Specifies which occurrence of the @posText within the referenced item is 
being acted upon. By default, the first occurrence is assumed. In addition to specifying which 
occurrence, the values all, none, first, and last may also be used. 

13.6 REFERENCE RESOLVER 
The URL-based references that are established create the links between various documents within the 
system. A software component is added to the web server to interpret the references, find the relevant 
piece within the database repository, extract it, and perform any necessary assembly and 
transformation before returning the result to the requester. This web server add-in is called a resolver. 
How it is built is determined by the web servers being used. In general, the resolver will perform the 
following sequence of functions: 

1) It will receive a reference from a requestor. 
 

2) It will canonicalize the reference, normalizing the text to match one of the forms it understands. 
 

3) If the reference is to the U.S. jurisdiction and the resolver understands the reference, then it will 
attempt to resolve it by retrieving the XML from the document. This might be either an entire 
document of a fraction thereof. 
 

4) If the reference is to another jurisdiction, and the resolver is able to resolve the reference, 
either locally or by deferring to another web server, then the resolver will resolve the reference 
that way. 
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5) If the reference is not understood, then the resolve will return a 404 – file not found error. 
 

6) If the document is being resolved locally, and the XML has been extracted from the database, 
then it may need to be assembled or otherwise processed to ensure that the correct temporal 
state has been established. If no temporal information is contained in the URL, then the present 
state is assumed. 
 

7) Once the correct XML has been created, if a format other than XML has been requested it will 
need to be transformed and/or converted into the correct format. This may involve 
transforming the XML into HTML or creating a PDF. 
 

8) Some of the steps above may be circumvented in the interest of performance and efficiency 
with a good caching strategy. 
 

9) Once the requested item has been retrieved, assembled, and transformed, it is returned to the 
requestor using HTTP. 

There are several strategies that the resolver can use to find the item referenced by the work part of 
the reference URL: 

1) The fastest method, if there is a reliable mapping between the @name value and the work part 
of the reference URL, is to map between the reference path and the @name. This approach is 
best when the XML documents are shredded into parts and stored as separate items, either in 
the file system or in a relational database. 
 

2) Another strategy is to rewrite the reference URL hierarchy as an XPath query. This approach is 
best when there is a good mapping between the reference hierarchy and the document 
hierarchy, and the information is stored in an XML repository that supports XPath. Performance 
might be an issue for more complex XPath queries. 
 

3) The third strategy is to create an indexing mechanism. This solution might rely on the inherent 
capabilities of the chosen database or repository, or it might be some sort of predefined 
mapping. How this strategy should ultimately be designed is beyond the scope of this User 
Guide. 

 
For a specific document, the preferred resolver is identified using the @xml:base attribute on the root 
element.   For instance: 

xml:base="resolver.mydomain.com" 

The @xml:base concatenated with the @identifier forms a complete URL reference. 

A preferred resolver does not currently exist for USLM.  Therefore, the @xml:base attribute is not 
provided in current USLM documents.  The United States House intends to provide a resolver in the 
future.  If and when that occurs, the @xml:base attribute will point to that resolver. 
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14 METADATA MODEL 

14.1  CONCEPT 
In addition to the text in an XML document, there is also a need to store a significant amount of 
metadata about a document. There are a few ways in which this metadata might be stored: 

1) Within the document in a separate partition. 
2) Scattered within the document. 
3) In a separate file. 
4) In a relational database. 

All four of these approaches can be supported. First, there is an optional <meta> block defined at the 
start of the document. Within this block, properties and sets of properties can be stored. The model for 
this metadata is open and extensible to support a wide range of needs, while also keeping the core 
concepts very simple. The metadata stored here can either be generated in an ongoing fashion, or as the 
result of an analysis of the text after it has been committed, or as a combination of these. 

In addition to the basic <meta> block, attributes are provided throughout the document for storing 
metadata about a particular element with that elements. Most of these attributes have prescribed 
usage, and the model is not as general and flexible as the <meta> block. However, there are a few 
attributes set aside for unprescribed uses. These include the @misc, @draftingTip, and 
@codificationTip. 

It is possible to store metadata in a separate file or in a relational database. If a separate file is chosen, 
no format for this file is prescribed. It can be an XML file, some other text file, or even a binary file. One 
option for the format is to borrow the <meta> tag with its <property> and <set> children from 
USLM. This is merely an option; it is not prescribed. 

If the information is stored in a separate file or is stored in a database, then it may be necessary to 
maintain a strict association between the XML elements and the records in the file. For this reason, 
element @id values are defined to be immutable, in order to provide a reliable handle for making 
associations. If the @id attribute cannot be managed reliably, then the separate file and database 
options should be avoided. 

14.2 PROPERTIES 
Properties are basic elements that may or may not have string content. The @name attribute acts as the 
primary identification for a <property>. The @value attribute (and its range siblings) or the @date 
attribute (and its range siblings) are used to place normalized values of dates. Sometimes, a value or 
date might exist as both text content in the element and, in a normalized form, as an attribute. 

Properties are primarily intended for use within the <meta> block or within <set> groupings within 
the <meta> block. However, it is also possible for properties to be used as inline elements within the 
main part of the document. 
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14.3 SETS 
Properties can be grouped into simple sets. A <set> is essentially a property folder. Like a 
<property>, the @name attribute acts as the primary identification for a property. Property sets can 
be nested. 
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15  NOTES MODEL 

15.1 CONCEPT 
Notes are found throughout the United States Code. USLM defines a very flexible model to support all 
the different types of notes that are found. 

15.2 NOTE CLASSES 
The abstract model provides two basic elements for implementing notes. 

15.2.1 Individual notes 
The basic <note> implement provides the fundamental model for a note. A note can be simple string 
of text or it can be a complex structure of text. 

15.2.2 Notes collection 
Notes can be grouped together into a collection using a <notes> container. 

15.3 TYPE OF NOTES 
There are four primary types of notes. Use the @type attribute to specify the note type: 

1) inline – notes that are shown inline where they appear in the text. 
 

2) endnote – notes that appear at the end of the level in which they appear. A <ref> pointer 
may be used to point to these notes 
 

3) footnote - notes that appear at the bottom of the page in which a reference to that note 
appears. A <ref> pointer is used to point to these notes.  
 

4) uscNote - notes that appear at the bottom of the section or heading, typically after the 
sourceCredit. 

15.4 TOPIC OF NOTES 
Notes in the United States Code often have a specific topic, such as "Amendments". Use the @topic 
attribute to specify the note's topic(s). More than one topic can be specified, separated by spaces, such 
as:  

@topic="regulations construction" 
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16 FEEDBACK 
The Office of the Law Revision Counsel of the U.S. House of Representatives welcomes any questions or 
comments about USLM or this user guide at uscode@mail.house.gov. 

mailto:uscode@mail.house.gov
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